

USTUR Whole-Body Case 0212: Testing NCRP Wound Model

Maia Avtandilashvili, Ph.D.

Research Associate, College of Pharmacy Washington State University

m.avtandilashvili@wsu.edu

Motivation

- >2,000 contaminated wounds reported
 - Commonly treated by tissue excision and chelation
- NCRP 156 Wound Model (2007)
 - Based exclusively on animal experiments
 - Important to test against human data
- Effectiveness of chelation treatment
 - Residual vs. projected dose

USTUR Resources

- ☐ Whole Body donations: A total of 42 cases
 - > 10 cases with documented wound intakes
 - ✓ ²³⁹Pu: 9 cases, ²⁴¹Am: 1 case
 - 4 cases with a single Pu wound as a major intake
 - Case 0212 selected for this study

USTUR Whole Body Case 0212

Exposure: Wound (treated)

Treatment: Tissue Excision & Ca-DTPA

Donation Year: 1984

Post-Intake:

Cause of Death: Pulmonary Emphysema

• Age: 56 y

Contaminated Wound

- Left middle finger, anterior surface
- \square Material involved: $Pu(NO_3)_4$
- Initial survey meter reading: 10,000 dpm
 - Decontaminated to 500 dpm
- ☐ Initial wound count: 59 nCi (~2.2 kBq)
 - After wound excision: 11 nCi (~0.4 kBq)
 - Excised tissue count: 122 nCi (~4.5 kBq)
- Chelation treatment: 6 months bi-weekly
 - A total of 26.5 g Ca-DTPA

Urinalysis Data

- Analysis Method:
 - ✓ Track Analysis
- ➤ MDA: ~0.001 Bq d⁻¹
- ➤ A total of 205 samples

Urinalysis Data: 'Treated'

- Analysis Method:
 - ✓ Track Analysis
- ► MDA: ~0.001 Bq d⁻¹
- ➤ A total of 205 samples
- > 180 samples
 - ✓ affected by DTPA
 - ✓ 201 days post-intake
- ~ 916 Bq Pu excreted during treatment
 - ✓ Max rate: 73 Bq d⁻¹

Urinalysis Data: 'Untreated'

- Analysis Method:
 - ✓ Track Analysis
- ► MDA: ~0.001 Bq d⁻¹
- ➤ A total of 205 samples
- 25 samples
 - ✓ not affected by DTPA
- Ave. post-DTPA rate:
 - \checkmark 0.02 ± 0.01 Bq d⁻¹

Autopsy Tissue Sample Analysis

- Total of 264 tissue samples
- Analysis Method: Alpha Spectrometry

Tissue	Concentration, Bq kg ⁻¹	Activity, Bq
Wound (muscle & skin)	40.2 ± 0.7	14.3 ± 0.3
Lungs including LNTH	0.48 ± 0.07	0.82 ± 0.12
Skeleton (174 samples)	11.0 ± 0.1	114.5 ± 0.5
Liver	33.8 ± 1.1	80.5 ± 2.6
Kidneys	0.37 ± 0.01	0.172 ± 0.005
Soft Tissues (56 samples)	0.0004 ± 0.0001	34.2 ± 0.6
Total Systemic	n/a	229.2 ± 2.7

Methods

- ☐ Internal Dosimetry Software
 - IMBA Professional Plus®
- Maximum likelihood fitting of:
 - 'Baseline' (post-treatment) urine data
- Models applied:
 - ICRP 67 Pu Systemic Model
 - NCRP Wound Model

NCRP Wound Model

- Default material types:
 - Soluble
 - ✓ Weak
 - ✓ Moderate
 - \checkmark Strong \leftarrow Pu(NO₃)₄
 - ✓ Avid
 - Colloid
 - Particle
 - Fragment

Results: Excretion

☐ Credible fit:

 \geq χ 2 alpha = 0.246

Results: Retention

Pu Retention at Time of Death, Bq			
Organ	Predicted	Measured	
Liver	97.3	80.5	
Skeleton	147.4	114.5	
Wound	6.8	14.3	

Model predicted:

- ☐ Pu in liver and skeleton
 - ➤ within ~25%
- Pu in wound
 - by a factor of 2

Results: Intake and Dose

☐ Intake

- IMBA estimate:

☐ Committed Effective Dose

- Residual CED: 177 mSv
- Projected CED: 622 mSv

Conclusions

- Data support NCRP Wound Model
 - \triangleright Pu(NO₃)₄ \Leftrightarrow Soluble: Strong

- Wound Treatment Effectiveness
 - > Chelation:
 - Projected Dose / Residual Dose: ~ 3.5
 - Chelation + Tissue Excision:
 - Projected Dose / Residual Dose: ~ 16

Future Work

- Apply Bayesian analysis methods:
 - Define suitable priors for wound model parameters
 - Use Markov Chain Monte Carlo (MCMC) to:
 - ✓ derive best estimate of intake
 - ✓ calculate uncertainties in wound retention parameters
 - ✓ quantify effectiveness of DTPA treatment

Questions?

