Incorrect Analyses of Radiation and Mesothelioma in the U.S. Transuranium and Uranium Registries

Joey Zhou, Ph.D.
At the Annual Meeting of the Health Physics Society
July 15, 2014 in Baltimore
The United States Transuranium and Uranium Registries (USTUR)

USTUR Registrants are volunteer body donors, who are typically former nuclear workers of the U.S. Department of Energy with a history of accidental occupational exposure to ionizing radiation. The main purpose of these donations has been for radiochemical analysis of the postmortem tissues and biokinetic modeling studies of radionuclides.
Mesothelioma

- A rare form of cancer that develops from cells of the mesothelium
- Accounts for only 0.1% of all deaths per year in the U.S.
- Most commonly caused by exposure to asbestos.
- Occurs more often in men than in women and risk increases with age
Mesothelioma and Radiation

• Studies of patients treated by radiotherapy for primary cancers have suggested that radiation contributes to the development of secondary mesothelioma.

• Studies of nuclear workers have not demonstrated an association between ionizing radiation exposure and mesothelioma (Metz-Flamant et al. 2011).
• The Gibb study finds a proportionate mortality ratio (PMR) of 62.4 for mesothelioma, and as cumulative external radiation dose increases, PMR increases.

• The Gibb study suggests that cumulative external radiation at nuclear facilities is associated with an increased risk of mesothelioma.

• PMR definition: the proportion of observed deaths from a given cause in a study population divided by the proportion of deaths expected from this cause in a standard population.

\[
PMR = \frac{P_{\text{obs}}}{P_{\text{exp}}}
\]
• Mesothelioma accounts for 2.1% (7/329) of all USTUR deaths.

• Mesothelioma accounts for approximately 0.1% of all deaths in the U.S.

• Crude PMR estimate:
 \[\text{PMR} = \frac{P_{\text{obs}}}{P_{\text{exp}}} = \frac{2.1\%}{0.1\%} = 21 \]

Objectives. We examined the relationship between radiation and excess deaths from mesothelioma among deceased nuclear workers who were part of the US Transuranium and Uranium Registries.

Methods. We performed univariate analysis with SAS Version 9.1 software. We conducted proportionate mortality ratio (PMR) and proportionate cancer mortality ratio (PCMR) analyses using the National Institute for Occupational Safety and Health Life Table Analysis System with the referent group being all deaths in the United States.

Results. We found a PMR of 62.40 (P < .05) and a PCMR of 46.92 (P < .05) for mesothelioma. PMRs for the 4 cumulative external radiation dose quartiles were 61.83, 57.43, 74.46, and 83.31. PCMRs were 36.16, 47.07, 51.35, and 67.73. The PMR and PCMR for trachea, bronchus, and lung cancer were not significantly elevated.

Conclusions. The relationship between cumulative external radiation dose and the PMR and PCMR for mesothelioma suggests that external radiation at nuclear facilities is associated with an increased risk of mesothelioma. The lack of a significantly elevated PMR and PCMR for trachea, bronchus, and lung cancer suggests that asbestos did not confound this relationship. (Am J Public Health 2013;103:710–716. doi:10.2105/AJPH.2012.300928)
• Since mesothelioma is primarily an occupational disease and the USTUR registrants were overwhelmingly adult male Caucasians,

\[PMR = \frac{P_{\text{obs}}}{P_{\text{exp}}} = \frac{2.1\%}{0.1\%} = 21 \]

• The reported PMR of 62.4 for mesothelioma is strikingly large, and does not add up by quick examination.
Concern with the Small Sample Size in the Gibb Study

• Intuitively there are many causes of deaths in the U.S. population and much less causes (some causes with no observed deaths) of 329 deaths in the USTUR.
• Therefore, the cause-specific proportion of death in the Gibb study and the corresponding cause-specific proportion of death in the U.S. population are based on different numbers of causes of deaths.
• The cause-specific proportion in the Gibb study is inflated because it is based on fewer causes of deaths. As a result, the PMR is overestimated and therefore biased.
Bias in the proportionate mortality ratio analysis of small study populations: A case on analyses of radiation and mesothelioma

Joey Y. Zhou

Office of Domestic and International Health Studies, U.S. Department of Energy, Washington DC, USA

Abstract
Purpose: To quantify bias in the proportionate mortality ratio (PMR) analysis of small study populations and develop a bias correction methodology.

Materials and methods: Bias in the PMR analysis of small study populations is quantified through algebraic derivation. A simulation procedure is developed to evaluate the relationship between bias and study population size. A recently published PMR analysis of radiation and mesothelioma among 329 deceased registrants in the United States Transuranium and Uranium Registries (USTUR) is used as an illustrated example.

Results: The proportionate mortality ratios are biased and overestimated in small population studies; the smaller the study population, the larger the overestimation. As such, the average overestimation of PMR for mesothelioma in the analyses of radiation and mesothelioma in USTUR is 7.2% (95% confidence interval = 5.1%, 9.7%); the PMR overestimation is 22.5% (95% confidence interval = 16.8%, 29.1%) when stratified by quartiles of radiation doses.

Conclusions: The degree of PMR small sample bias is mainly determined by the sample size ratio, which is defined as the ratio of the sample size to the number of disease categories in the reference population. Correction for the bias is recommended when the sample size ratio is less than 5. The quantification and correction algorithm of the PMR small sample bias developed in this research supplements the PMR methodology.

Keywords: Radiation health effect, mesothelioma, proportionate mortality ratio, small sample bias

Introduction
A recently published study, Analysis of Radiation and Mesothelioma in the United States Transuranium and Uranium Registries (Gibb et al. 2013) examines seven the United States (LTAS 2010, LTAS Manual 2010, Schubauer-Berigan et al. 2011), the study (referred as the Gibb study hereafter) finds a proportionate mortality ratio (PMR) of 62.40 for mesothelioma. The Gibb study suggests that cumulative external radiation is associated with an increased risk of mesothelioma.

The reported PMR of 62.4 for mesothelioma is strikingly large, and does not add up by quick examination. A PMR is defined as the proportion of observed deaths from a given cause in a study population divided by the proportion of deaths expected from this cause in a standard population. The proportion of observed deaths from mesothelioma among all USTUR deaths is 2.1% (7/329), while the proportion of deaths from mesothelioma among all U.S. deaths is approximately 0.1% (Price and Ware 2009) as cited by the Gibb study. Therefore, a crude estimate of the PMR for mesothelioma is only 21.0 (2.1% / 0.1%). Furthermore, mesothelioma is primarily an occupational disease and the USTUR registrants were overwhelmingly adult male Caucasians. Since mesothelioma accounts for over 0.16% of all deaths in the population of American male Caucasians over age 30 (LTAS 2010, 119 Underlying Cause U.S. Death Proportions 1960–2007), a better estimate of the PMR for mesothelioma is 13.1 (2.1% / 0.16%). Thus, the PMR for mesothelioma was largely overestimated in the Gibb study. As detailed in the letter to the editor (Zhou 2014), the Gibb study fails to consider the disease coding change for mesothelioma over the timeframe of the study.

The PMR analysis using a sample size of only 329 deaths in the Gibb study is also problematic. In practice, PMR are often computed for large study populations (in which more than thousands of cases are considered) over a broad number of disease categories. When PMR analysis is applied to a small study population over a large number of disease categories, the small number of deaths is likely distributed over
National Institute for Occupational Safety and Health/Life Table Analysis System (LTAS)

• The Gibb study applies LTAS, a software used to analyze a study population to determine if disease incidence or mortality among the study population is higher or lower than expected compared to a referent population.

• LTAS translates the causes of death from the World Health Organization International Classification of Diseases (ICD) codes to 119 disease categories and provides the baseline U.S. death proportions.
Mesothelioma ICD coding history

- Since 1999 when ICD-10 was implemented, mesothelioma has been coded as a separate underlying cause of death (C45.0-C45.9)
- Pre-1999, mesothelioma was coded as, Malignant neoplasm of pleura, unspecified (ICD-9:163.9)
 Malignant neoplasm of bronchus and lung, unspecified (ICD-9:162.9)
 Malignant neoplasm without specification of site (ICD-9:199-)
NIOSH-119 ICD Codes by Category, 1960-2007

<table>
<thead>
<tr>
<th>Major ID</th>
<th>Minor ID</th>
<th>Minor Description</th>
<th>Revision 7</th>
<th>Revision 8</th>
<th>Revision 9</th>
<th>Revision 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>TUBERCULOSIS & HIV RELATED DISEASE (MAJOR)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Respiratory tuberculosis</td>
<td>001-008</td>
<td>010-012</td>
<td>010-012</td>
<td>A16#, A16.2–A16.5, A16.7–A16.9, B90#, B90.9, J65#, J98.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Other tuberculosis</td>
<td>010-019</td>
<td>013-019</td>
<td>013-018</td>
<td>A17#, A17.0–A17.1, A17.8–A17.9, A18#, A18.0–A18.8, A19#, A19.0–A19.2, A19.8–A19.9, B90.0–B90.2, B90.8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>HIV-related †</td>
<td>No codes</td>
<td>No codes</td>
<td>042-044</td>
<td>B20, B21#, B21.0–B21.3, B21.7–B21.9, B22#, B22.0–B22.2, B22.7, B23#, B23.0–B23.2, B23.8, B24#</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>MALIGNANT NEOPLASMS OF BUCCAL CAVITY & PHARYNX (MAJOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>MN of lip</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>C00#, C00.0–C00.6, C00.8–C00.9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>MN of tongue</td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>C01#, C02#, C02.0–C02.4, C02.8–C02.9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>MN of other parts of buccal cavity</td>
<td>142-144</td>
<td>142-145</td>
<td>142-145</td>
<td>C03#, C03.0–C03.1, C03.9, C04#, C04.0–C04.1, C04.8–C04.9, C05#, C05.0–C05.2, C05.8–C05.9, C06#, C06.0–C06.2, C06.8–C06.9, C07#, C08#, C08.0–C08.1, C08.8–C08.9, C46.2</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>MN of pharynx</td>
<td>145-148</td>
<td>146-149</td>
<td>146-149</td>
<td>C09#, C09.0–C09.1, C09.8–C09.9, C10#, C10.0–C10.4, C10.8–C10.9, C11#, C11.0–C11.3, C11.8–C11.9, C12#, C13#, C13.0–C13.2, C13.8–C13.9, C14#, C14.0, C14.2, C14.8</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>MALIGNANT NEOPLASMS OF OTHER & UNSPECIFIED SITES (MAJOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>MN of bone</td>
<td>196</td>
<td>170</td>
<td>170</td>
<td>C40#, C40.0–C40.3, C40.8–C40.9, C41#, C41.0–C41.4, C41.8–C41.9</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>Melanoma</td>
<td>190</td>
<td>172#, 172.0–172.4, 172.6–172.9</td>
<td>172</td>
<td>C43</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>Other MN of skin</td>
<td>191</td>
<td>173#, 173.0–173.4, 173.6–173.9</td>
<td>173</td>
<td>C44, C46#, C46.0, C46.9</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>Mesothelioma †</td>
<td>No codes</td>
<td>No codes</td>
<td>No codes</td>
<td>C45#, C45.0–C45.2, C45.7, C45.9</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>MN of connective tissue</td>
<td>197</td>
<td>171</td>
<td>171</td>
<td>C46.1, C49#, C49.0–C49.6, C49.8–C49.9</td>
</tr>
</tbody>
</table>
NIOSH/LTAS has no mesothelioma death data pre-1999

Example: White males, age 70 to 74

<table>
<thead>
<tr>
<th>Age</th>
<th>Calendar Period</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-74</td>
<td>1960-1964</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1965-1969</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1970-1974</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1975-1979</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1980-1984</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1985-1989</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1990-1994</td>
<td>0</td>
</tr>
<tr>
<td>70-74</td>
<td>1995-1999</td>
<td>0.000544</td>
</tr>
<tr>
<td>70-74</td>
<td>2000-2004</td>
<td>0.002813</td>
</tr>
<tr>
<td>70-74</td>
<td>2005-2009</td>
<td>0.002926</td>
</tr>
<tr>
<td>70-74</td>
<td>2010+</td>
<td>0.002926</td>
</tr>
</tbody>
</table>

- LTAS: proportions for mesothelioma (minor 31) are all zeros pre-1999
- More than 80% of USTUR deaths occurred before 1999 including 6 of 7 USTUR mesothelioma cases
LTAS calculates PMR as a ratio of weighted sums of the proportion of deaths from a specific cause in a study population vs. the comparable weighted sum in the U.S. population deaths (stratified by age, race, sex, and calendar year)

\[
\text{PMR} = \frac{\sum W_i \times P_{\text{obs, } i}}{\sum W_i \times P_{\text{exp, } i}}
\]

Where,

- \(P_{\text{obs, } i} \) = the \(i^{th} \) stratum-specific proportion in the study population
- \(P_{\text{exp, } i} \) = the \(i^{th} \) stratum-specific proportion in the U.S. population
- \(W_i \) = the \(i^{th} \) stratum-specific number of observed deaths in the study population.
Conclusions

• The USTUR death data are not compatible and therefore should have not been compared with the LTAS U.S. death data in the PMR analysis for mesothelioma because there is no specific code for it pre-1999.

• The analyses of the Gibb study were conducted incorrectly from the beginning, resulting in false findings and conclusions on mesothelioma and radiation.

• Caution should be exercised when using LTAS, or similar analytic software, for mortality studies where the rules for coding cause of death are different over the time frame of a study.
INCORRECT ANALYSES OF RADIATION AND MESOTHELIOMA

The recent paper, "Analyses of Radiation and Mesothelioma in the US Transuranium and Uranium Registries," by Gibb et al. examines seven mesothelioma deaths among a small population of 329 deceased registrants in the US Transuranium and Uranium Registries (USTUR). Using the National Institute for Occupational Safety and Health’s Life Table Analysis System with the referent group being all deaths in the United States, the study finds a proportionate mortality ratio (PMR) of 62.40 (P<.05) for mesothelioma, the highest PMR ever observed and more than an order of magnitude higher than any other published studies.

Mesothelioma has been coded as a separate underlying cause of death (C455.0-C459.9) since 1999 when International Classification of Diseases, 10th revision (ICD-10) was implemented. Before 1999, mesothelioma was coded as malignant neoplasm of pleura, unspecified (ICD-9 163.9); malignant neoplasm of bronchus and lung, unspecified (ICD-9 162.9); malignant neoplasm without specification of site (ICD-9 199); and so on. Life Table Analysis System has no death data in the mesothelioma disease category for the United States before 1999, and therefore does not support PMR analysis for mesothelioma deaths before 1999. More than 80% of USTUR deaths occurred before 1999 including six of seven USTUR mesothelioma cases.

Life Table Analysis System calculates PMR as a ratio of weighted sums of the proportion of deaths from a specific cause in the exposed versus the comparable weighted sum in the unexposed (often the US population deaths). Adjustment for age, race, gender, and calendar time is accomplished by stratification and indirect standardization. The formula to calculate the PMR is presented below.

\[PMR = \sum_{i=1}^{n} \frac{W_i \times P_i}{\sum_{i=1}^{n} W_i \times P_0} \]

where the variables are defined as follows:

- \(P_i \) = the \(i^{th} \) stratum-specific proportion in the observed cohort (the exposed cohort)
- \(P_0 \) = the \(i^{th} \) stratum-specific proportion in the reference population (unexposed population)
- \(W_i \) = the \(i^{th} \) stratum-specific number of observed deaths in the exposed cohort.

Because all strata before 1999 have zero \(P_0 \) and only 20% (one fifth) of USTUR deaths contribute the weighted sum of the denominator in the formula, the PMR for mesothelioma by Gibb et al. is greatly overestimated. If one assumes that the age distributions of deceased registrants (who were overwhelmingly White and male) are similar before and after 1999, and the stratum-specific proportions for mesothelioma in the reference populations are the same before and after 1999, the PMR for mesothelioma is a five-fold overestimate.

The USTUR death data are not compatible and therefore should not have been compared with the Life Table Analysis System US death data in the PMR analysis for mesothelioma because there is no specific code for it before 1999. The analyses were conducted incorrectly from the beginning, resulting in an artificially high-reported PMR for mesothelioma. Caution should be exercised when using Life Table Analysis System or similar analytic software for mortality studies in which the rules for coding cause of death are different over the time frame of a study.

About the Author
Joe Zhou is with the Office of Domestic and International Health Studies, US Department of Energy, Washington, DC. Correspondence should be sent to Joe Zhou, PhD, Office of Domestic and International Health Studies, US Department of Energy, 5500 Independence Ave, SW, Washington, DC 20585 (e-mail: joe.zhou@ee.bep.gp). Reprints can be ordered at http://www.aph.org by clicking the "Reprints" link.

This letter was accepted September 26, 2013. doi:10.2105/AJPH.2013.301718

References

GIBB ET AL. RESPOND

We thank Zhou for his interest in our study; however, his letter misquotes our article. He states that we reported the "highest PMR ever observed and more than an order of magnitude higher than any other"
Proportionate mortality ratio explained

- Proportionate mortality ratio (PMR): the proportion of observed deaths from a given cause in a study population divided by the proportion of deaths expected from this cause in a standard population.

\[
\text{PMR} = \frac{P_{\text{obs}}}{P_{\text{exp}}}
\]

A PMR greater than 1.0 (statistical significance is determined by assuming Poisson distribution) indicates that a particular cause accounts for a greater proportion of deaths in the population of interest compared to the standard population.