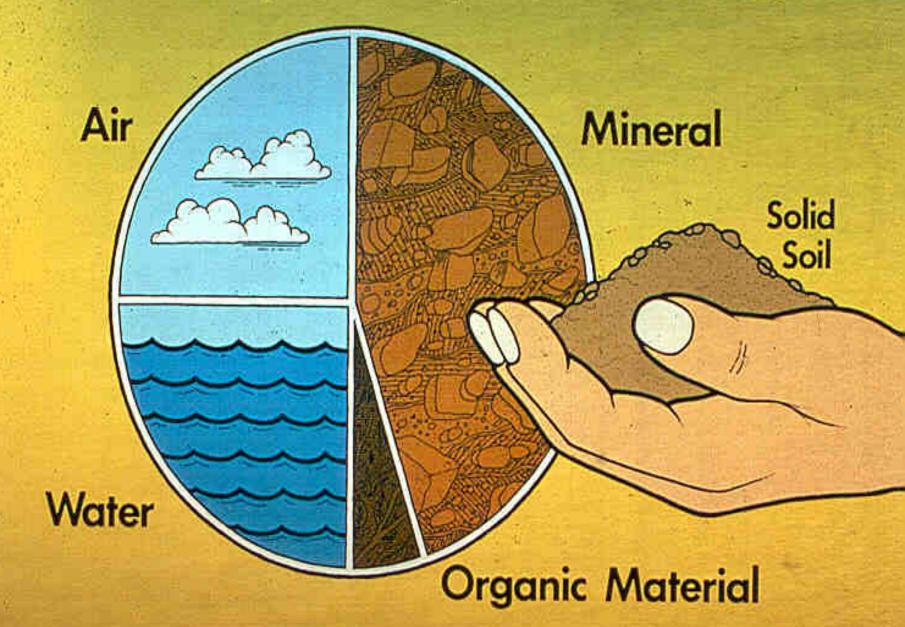
Olericulture – Hort 320 Lesson 6, Fertility, Irrigation, Pests

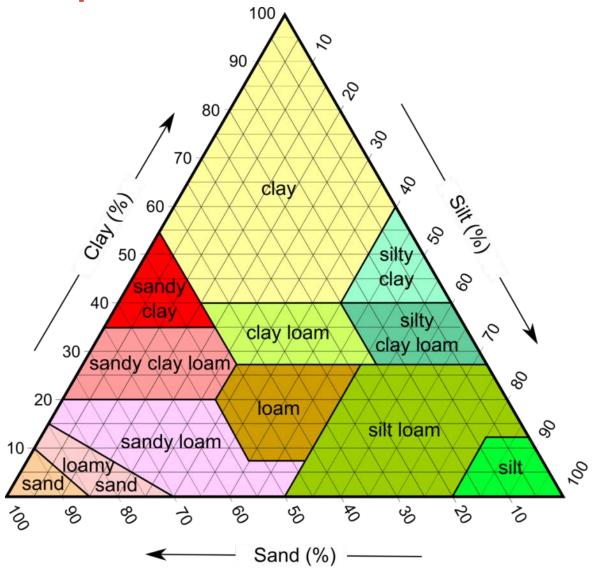
Jeremy S. Cowan

WSU Spokane County Extension

222 N. Havana St.


Spokane, WA 99202

Phone: 509-477-2145 Fax: 509-477-2087


Email: jeremy.cowan@wsu.edu

Four Principal Components of Soil

Soil Composition

Soil Types:

Organic

Peat soils (>50% OM, partly decomposed)

Muck soils (<50% OM, mostly decomposed)

Mineral

Sand (large particles, low WHC, low nutrients)

Silt (medium particles, high WHC, med nutrients)

Clay (small particles, med WHC, high nutrients)

Soil Selection:

Organic soils

Good for production of leaf, root, and bulb crops

Good for germination of fineseeded crops

No crusting problems

High fertility

Slow to warm and prone to frost damage

Poor drainage

Soil Selection:

Sands and Loamy Sands
Preferred for early production
Good for root and tuber crops
Well drained and aerated
Low nutrient content
Very low WHC

Soil Selection:

Sandy Loams, Silt Loams, and Loams

Preferred for most vegetable production

Easy to work and give high yields

Good WHC

Moderate levels of natural nutrition

Easy soils to maintain

Soil Selection:

Loamy Clays and Clays

Suitable for late planted crops

Productive in dryland production

Good water retention during extended dry periods

Poor aeration

Can develop compaction or texture problems

Soil organic matter

Source of nitrogen, phosphorus, and sulfur

Increases cation exchange

Improves soil structure

Improves porosity of heavy soils

Improves heat absorption

Soil organic matter

Must be constantly renewed in mineral soils

Can have detrimental effects

High salt concentration

Layered soils

Nitrogen tie-up

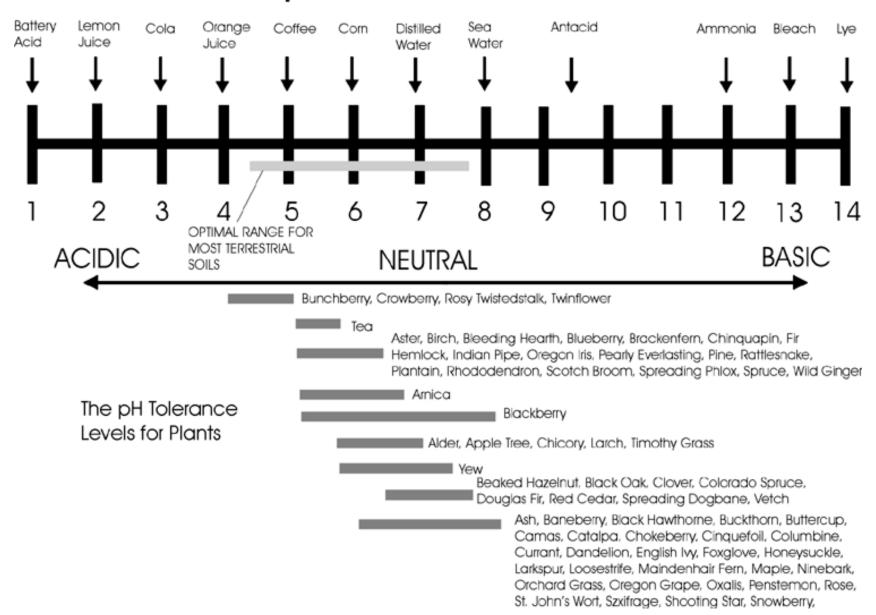
Soil organic matter

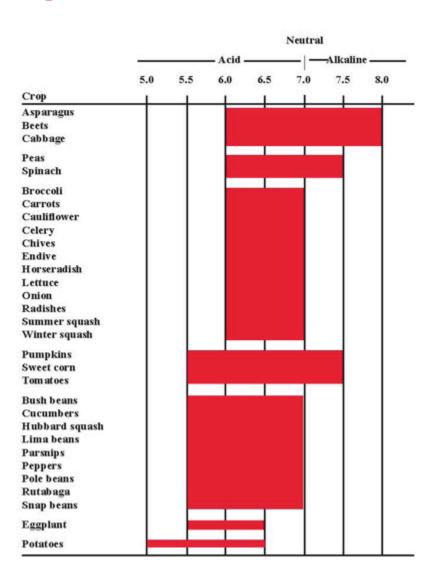
Sources:

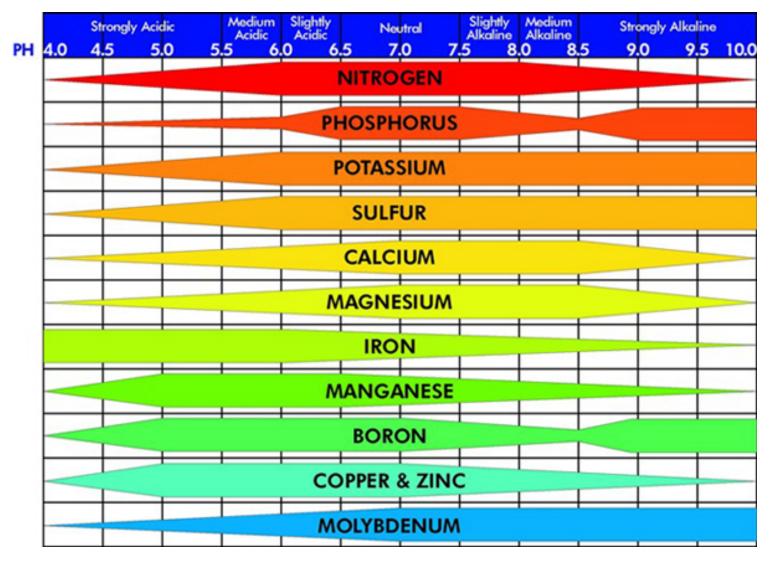
Crop residues

Animal manures

decomposed


fresh


Green manures


Cover crops

pH Scale for Soils

Soil pH

Optimum 5.0-7.0

Acid soils can be adjusted with lime

Alkaline soils are more difficult
Sulfur compounds for short-term
adjustment

Addition of unavailable nutrients

Macronutrients:

Nitrogen Calcium

Phosphorus Magnesium

(**K**) Potassium Sulfur

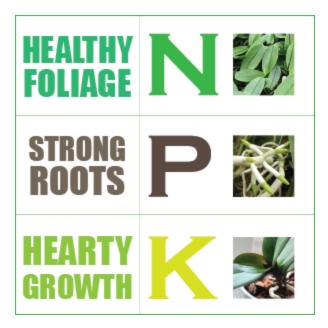


Table 6.4—Guide to the Nitrogen Fertilizer Requirements of Vegetable Crops.

	Estimated Total Nitrogen Requirement		
Сгор	Dark-colored Soils Lbs. per A.	Light-colored Soils Lbs. per A.	
Asparagus	80	100	
Beans	30	45	
Beet	50	65	
Cabbage, late	60	75	
Carrot	60	75	
Cauliflower	65	80	
Corn, late	40	55	
Cucumber	20	45	
Eggplant	30	45	
Horseradish	45	60	
Lettuce	45	60	
Muskmelon	20	35	
Onion	45	60	
Parsnip	60	75	
Peas	20	35	
Pepper	30	45	
Potato, late	60	75	
Pumpkin and squash			
Summer squash	30	45	
Winter pumpkin	60	75	
Spinach	50	60	
Sweet potato	30	40	
Tomato	60	75	
Turnip	50	50	
Watermelon	20	35	

Table 6.5—Phosphorus (P) and Potassium (K) Recommended for the Vegetable Crops Grouped According to Requirements.*

		Requirement per Group (in Pounds per Acre)				
	Soil Test	l	11	[11	IV	
 -	Very low	132	105	62	26	
٢	Low	105	62	26	9	
	Medium	70	18	18	9	
	High	35	9	18	9	
	Very high	18	9	18	9	
 K	Very low	200	200	152	56	
	Low	160	160	112	16	
	Medium	112	112	96	16	
	High	64	64	80	16	
	Very high	64	16	80	16	
Crops	·:	Tomato	Asparagus	Carrot	Beans	
•		Potato	Onion	Parsnip	Peas	
		Pepper	Sweet corn	Beet		
		Eggplant	Spinach	Radish		
		Cabbage	Lettuce	Turnip		
		Cauliflower	Sweet potato	Horseradish		
		Broccoli				
		Cucumber				
		Melon				
		Squash				
		Pumpkin				

^{*}Phosphorus and potassium are given as elements instead of oxides; 20 percent phosphorus (P) equals 45.5 percent phosphorus pentoxide (P_2O_5), and 40 percent potassium (K) equals 48 percent potassium oxide (K_2O).

Micronutrients:

(**Fe**) Iron

(Cu) Copper

(Mn) Manganese

(Zn) Zinc

Boron

Cobalt

(CI) Chlorine

Molybdenum

Fertilizer needs dependent on:

Crop

Soil type and pH

Residual nutrients

Organic matter

Determination of fertilizer rates:

Determine intended crop

Collect soil samples

Follow published recommendations for soil type and location

Use tissue sampling and seasonal applications if appropriate

Registration to the control of the second distribution of the second distr

Amount of Zinc sulfate =
$$\frac{15 \times 400}{36 \times 10,000} \times 100 = 1.7 \text{ kg} \text{ (Assuming 36\% Zn in ZnSO4)}$$

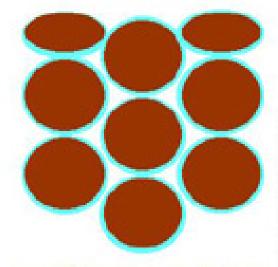
Amount of Gypsum =
$$\frac{10 \times 400}{18 \times 10000} \times 100 = 0.6 \text{ kg} \text{ (Assuming 18\% S in Gypsum)}$$

Amount and frequency dependent on:

Crop requirement

Environmental conditions

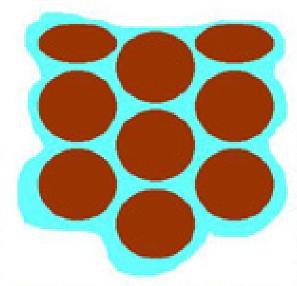
Soil type


Irrigation equipment type dependent on:

Intended crop use and crop response

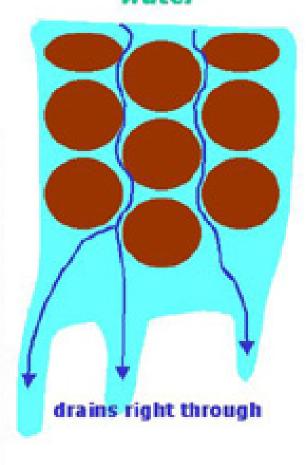
Water availability and price

Soil characteristics


Hygroscopic water

remaining water adheres to soil particles

Wilting point


Capillary water

water held in micropores

(available waterplant roots <u>can</u> absorb this)

Gravitational water

← Field capacity

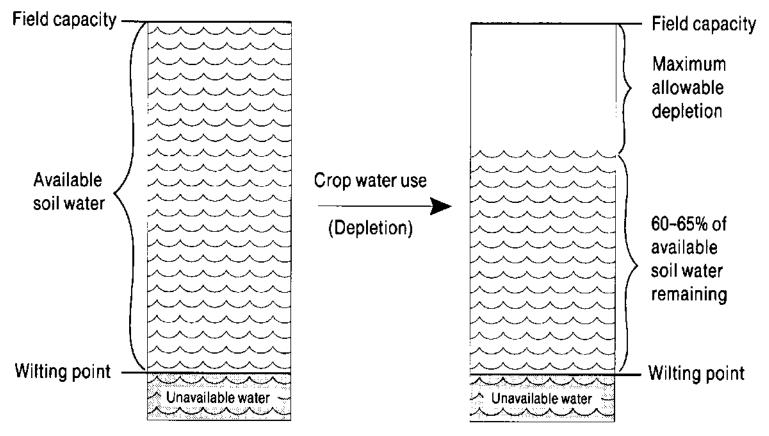


Fig. 8.2. Available soil water is the difference between the field capacity of a soil (the amount of water retained in the total soil pore space after saturated soil has drained) and the permanent wilting point (the point at which plants can no longer obtain water from the soil and thus wilt and die). Allowable depletion is the point to which available soil water can be depleted without inducing plant stress. For potatoes, the soil must always be maintained above 60-65% of available soil water.

Table 8.2. Available soil water and infiltration rates in soils of various textures

Soil texture ^a	Available soil water (in./ft)	Infiltration rate (in./hr)
Coarse sand	0.4-0.7	0.5-1.0
Fine sand	0.7 - 0.9	0.5 - 1.0
Loamy sand	0.9-1.3	0.5 - 1.0
Sandy loam	1.2-1.9	0.5 - 1.0
Loam	1.8-2.6	0.3 - 0.5
Silt loam	2.0-3.0	0.3-0.5
Clay loam	2.0-2.6	0.1-0.3
Clay	1.8-2.4	0.1-0.3

^aSoil textures are defined in Figure 2.3.

Types of irrigation equipment:

Surface or flood

Sprinkler

hand move

side roll

big gun

center pivot

Trickle or drip systems
Sub irrigation

Sub-irrigation

Types of irrigation equipment:

Surface or flood

Sprinkler

hand move

side roll

big gun

center pivot

Trickle or drip systems

Sub-irrigation

Types of irrigation equipment:

Surface or flood

Sprinkler

hand move

side roll

big gun

center pivot

Trickle or drip systems
Sub-irrigation

Types of irrigation equipment:

Surface or flood

Sprinkler

hand move

side roll

big gun

center pivot

Trickle or drip systems
Sub-irrigation

Common weeds in vegetables:

Grasses

foxtail, wild oats, barnyard grass

Broadleaf

redroot pigweed, lambsquarter, purslane, kochia, Canada thistle, bindweed

Sedges yellow nutsedge

Methods of weed control:

Cultivation

Mulching organic materials manmade materials

Herbicides

Potential problems with herbicide use:

Limited choice of registered compounds

Lack of efficacy

Presence of resistant weed species

Crop sensitivity

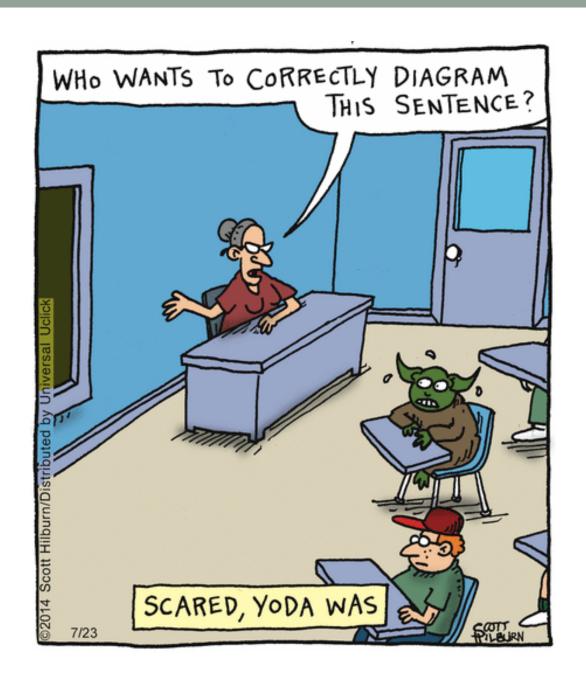
Reasons for herbicide effectiveness:

Crop morphology (i.e. waxy leaves)

Application timing (i.e. root inhibitors)

Spray placement (i.e. spray shields)

Biochemical crop tolerance (selectivity)


Factors affecting rates and timing:

Soil type

Environmental conditions

Stage of crop growth

What is Plant Disease?

ANY malfunctioning of host cells and tissues that results from continuous irritation by a pathogenic agent or environmental factor and leads to the development of symptoms

Agents of Plant Disease:

Nonparasitic – noninfectious, abiotic

Parasitic – Infectious, biotic

An organism living on or in another living organism (host) and obtaining its food from the latter.

Plant Pathogens:

Compete with crop plants by using metabolites, carbohydrates and other nutrients produced by the host

Reduce photosynthetic efficiency

Reduce water and nutrient uptake

Disrupt normal growth and metabolites at the cellular level

Disease Cycle – Pathogen Life Cycle

Stages of Disease Development

dissemination inoculation germination invasion incubation infection

Disease-causing pathogens:

Viruses

Fungi

Bacteria

Mycoplasmae

Disease-Causing Pathogens

Fungi

> 100,000 known species, most are saprophytic

only 10,000 species are known to cause disease in plants

Beneficials

decay plant and animal tissues

symbionts – mycorrhizae

antibiotics - Penicillium, Gleocladium species

Fungi

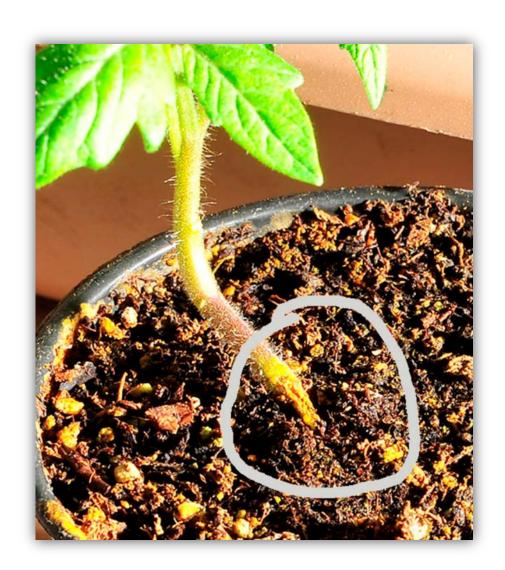
Fungi

Fungi

Symptoms of Fungal Infection

Root rots

Basal stem rot / wirestem


Damping-off

Canker

Scab

Leaf spots

Blights

Symptoms of Fungal Infection

Soft rots and dry rots

Clubroots

Galls

Witches' broom

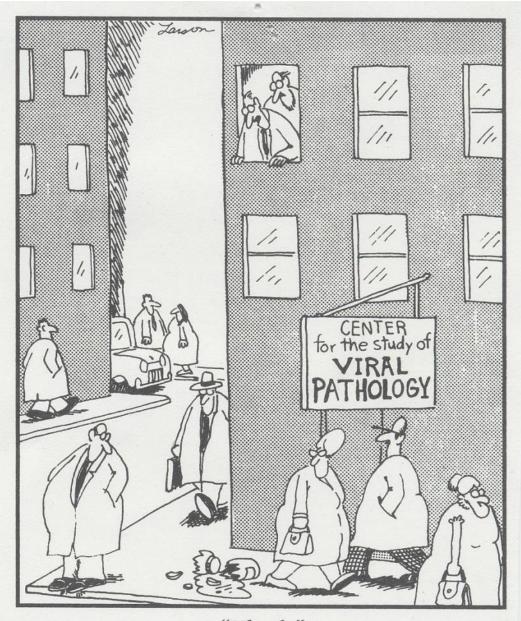
Warts

Leaf curl

Control of Fungal Diseases

Soil fumigation – methyl bromide, vapam

Use disease free propagules


Resistant varieties

Fungicides

Crop rotation

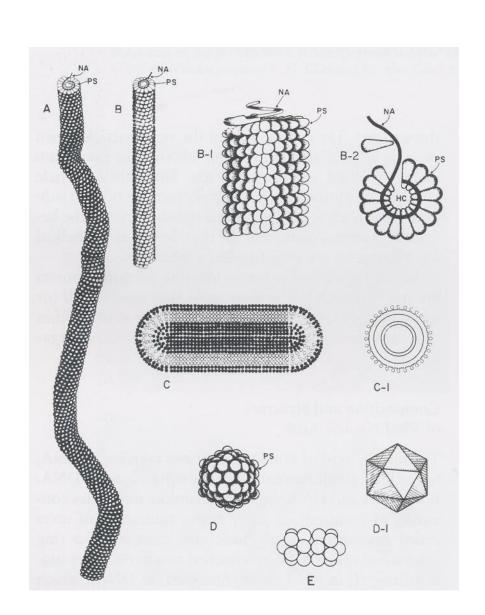
Cultural practices – sanitation / no wounds

Biocontrol agents / antagonists

"Uh-oh."

Virus particles

A = flexous threadlike virus


B = rigid rod-shaped virus

C = short, bacillus like-virus

D = polyhedral virus

D1 = icosahedron

E = geminivirus

Obligate parasites

To cause disease, they must have a vector:

Insects (aphids, leafhoppers, thrips)

Soil-borne fungi

Nematodes

Infected seed

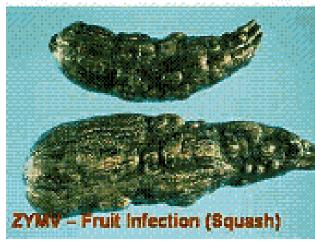
Mechanical transmission (humans)

Given name based on host and symptoms:

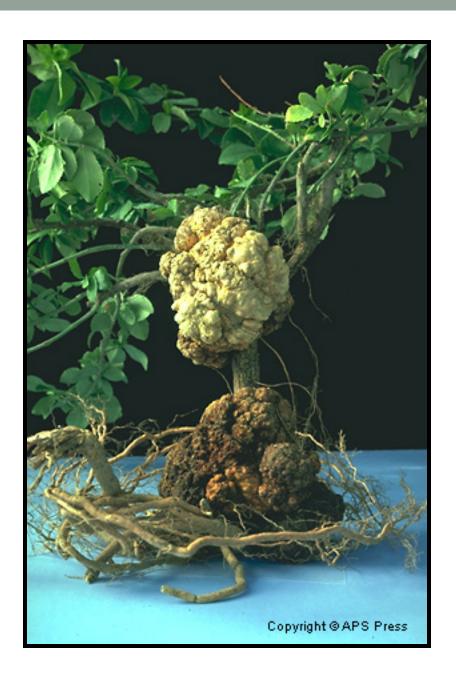
Tomato Ringspot Virus

Cucumber Mosaic Virus

Tobacco Mosiac Virus


Potato Leaf Roll Virus

Control of virus diseases:


Control insect vectors

Resistant varieties

Use virus-free material (certified seed)

Diseases caused by bacteria

Diseases caused by bacteria

Control of Bacterial Disease

- Mostly copper based (Bordeaux mix, Kocide, copper sulfate)
- Antibiotics streptomycin
- Resistant varieties
- Insect control
- Sanitation

General Disease Control Strategies

Disease control strategies:

Utilize certified seed

Control refuge species

Select disease-free production sites

Use disease resistant cultivars

Utilize crop rotation

Optimize planting date for avoidance

Apply appropriate pesticides when necessary

Control vectors

Monitoring populations

Scouting
plant inspections for insects
plant inspections for injury
sweep nets

Trapping
Baits
Hormone traps

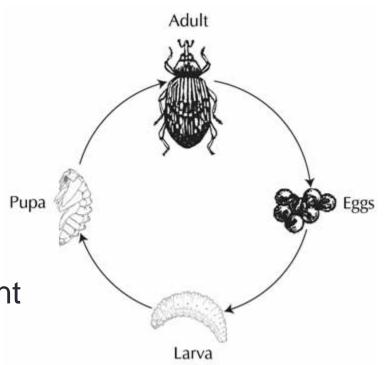
Action decisions:

Determine injury potential (life cycle)

Determine economic threshold

Determine potential for future population shifts (sources and reproductive rate)

Insect control strategies:

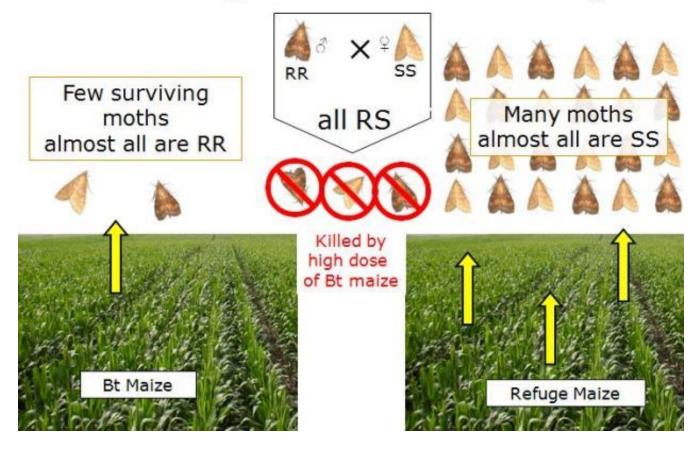

Eliminate refuges

Protect beneficial insects

Understand the life cycle of important pests

Design an effective scouting program

Timely insecticide applications


Resistance management:

Avoid insecticide applications when possible

Rotate insecticides with different modes of action

Maintain refuges when appropriate

IRM: High Dose and Refuge

