Olericulture – Hort 320 Lesson 5, Environment, Propagation

Jeremy S. Cowan

WSU Spokane County Extension

222 N. Havana St.

Spokane, WA 99202

Phone: 509-477-2145 Fax: 509-477-2087

Email: jeremy.cowan@wsu.edu

Environmental Factors Influencing Growth

Climate

Temperature

Moisture

Light

Wind

Environmental Factors Influencing Growth

Climate - the average course of weather at a specific location over a period of many years and is the integrated effect of the weather

Environmental Factors Influencing Growth

Weather - the state of the atmosphere with respect to temperature, moisture, solar radiation, air movement, and other meteorological phenomenon over a short period of time

Environmental Factors - Temperature

Global temperature zones

Cardinal temperatures

Minimum

Maximum

Optimum

Cardinal temperatures

Maximum – Growth ceases

Optimum – Growth proceeds w/o limitation

Minimum - Growth ceases

Van Hoff's Law (Q₁₀ factor)

For every 10°C rise in temperature, the rate of dry matter production or growth doubles (usually true between 5-35°C)

High temperature Injury

Plants cease to grow at specific temperatures, and at some point are damaged or killed.

Leaf temperatures can be as much as 8°C higher than the ambient air temperature.

Heat Units (Degree Days)

Accumulated daily throughout the season

Diurnal Changes = Thermoperiodicity

A large diurnal range is favorable to photosynthesis

High night temperatures increase respiratory rates.

Vernalization

The low temperature induction of floral initiation

With some species, imbibed seed can be vernalized.

Juvenile or non-responsive plants are insensitive to low-temp exposure at certain growth stages.

Dormancy

Seeds and organs that have the potential to germinate but do not because of unfavorable environmental conditions

The change from dormancy to active growth changes slowly, usually as a result of gradually diminishing concentrations of inhibitors or hormones.

Length of growing season

Frost-free days – average period between the last killing frost in the spring and the first in the fall

Freezing Injury

Some vegetables are injured by temperatures at or slightly below freezing.

Some vegetables show above-freezing cold injury

Many tropical / subtropical plants can be injured at nonfreezing temperatures below 10°C.

Varies with species, cultivar, growth stage...

Hardening

Adaptation of plants to withstand cooler (or warmer) temperatures by subjecting them to gradually decreasing (increasing) temperatures.

Hardening also occurs when plants are subjected to gradual water stress or nutrient deprivation.

Soil Temperature

Soil temperature

Soil temps are dependent on air temps

Dry soil may actually be hotter than air

Soil temps need to be monitored before planting:

seed germination

root growth

tuber/bulb growth & development

Moisture Effects on Plants – Rainfall

Moisture Effects on Plants

Absolute Humidity vs.

Relative Humidity

30° C

RH = the amount of water in air as a prepention acunibatotheneiocair hold — temperature dependent

Moisture Effects on Plants

Relative Humidity

Along coastal areas high RH and fog may condense to dew, which is an important water source in arid regions

Physiology of Water in Plants

Plant water relations

Less than 1% of the water that passes through the plant is utilized in the photosynthetic process. Most is used in transpiration.

Evapotranspiration – the combined evaporation from the soil surface, transpiration, and cuticular loss of water from plants

Irrigation
Replenishes
Water
Removed

By:

- Evaporation
- Growing Plants
- Drainage

Physiology of Water in Plants

Plant water relations

Hydrophytes – water-loving aquatic plants that normally grow in water or swamps

Mesophytes – prefer to grow in well-drained soils, wilt if water stressed

Xerophytes – prefer dry climates and can survive long periods of drought without permanent damage

Day Length

Photoperiodism = sensitivity to length of dark period in triggering developmental responses such as flowering or growth of storage organs.

Light Intensity

Light compensation point = the light intensity at which photosynthesis equals respiration

Light Intensity

Light saturation point = the light intensity at which there is no additional increase in photosynthesis

Light Quality

Leaf area index – the total leaf area subtended per unit area of land

Plant physiological responses to light

Response Stem elongation	Wavelength (nm) 720–1000
Germination inhibition of cer- tain seed	
Stimulation of onion bulbing	
Suppression of onion bulbing Red pigment (lycopene) synthe- sis in tomato	650–690
Flower stimulation of long-day plants	
Flower inhibition of short-day plants	
Promotion of germination of certain seeds	
Promotion of anthocyanins	
Photosynthesis	440-655
Chlorophyll formation	445-660
Phototropism	350-500

Duration

LENGTH OF PHOTOPERIOD WITH RELATION TO SEASON AND LATITUDE

FIG. 6.2. Length of photoperiod relative to season and latitude.

Wind

Increase transpiration rate

Decrease leaf temperature

Replenish CO₂

Can damage plants

Vegetable Propagation

Types of propagules:

Botanical seed

Transplants

Vegetative cuttings, tubers, bulbs, rhizomes, roots, etc.

Tissue culture

Seed

What is a seed?

Fertilized mature ovule including:

Embryo (small undeveloped plant)

Endosperm (food storage tissue)

Seed coat (protective covering)

Seed

Characteristics of good seed:

Genetically pure

High germination

High vigor

No dormancy

Disease free

Free of weed seed and foreign matter

Seed

Maintaining genetic purity:

Production under isolation

Cross-pollinated - 1/8 to 1/4 mile

Self pollinated – 300 to 600 feet

Insect pollinated $-\frac{1}{2}$ to 1 mile

Prevention of mechanical mixing

Seed

Germination standards:

Federally mandated standards

Range from 40% (New Zealand spinach) to 80% (pea, lettuce, cucumber)

Labeled "Below Federal Standard"

State standards for certification WAC 16-301-090

Certification:

Tagging system that assures seed meets minimum standards

Standards established by Association of Official Seed Analysts (AOSA) and by state certification agencies

Importance of the tag:

Basis of all certification procedures

Creates a paper trail in cases of poor performance

Identifies seed by searchable lot numbers

Certification:

Certified seed labeled with:

Cultivar name

Lot number

Purity

Germination percentage (date of test)

Amount of inert or other material

List of insect or disease control treatments

Example of seed certification tag

- 1) RUSS HRS WHEAT
- 2) PURE SEED 99.00%
- 3) INERT MATTER 0.98%
- 4) OTHER CROP SEED 0.01%
- 6) GERMINATION 98%
- 7) HARD & DORMANT SEED 0%
- 8) TOTAL VIABLE98%

(GERM+ HARD+ DORMANT)

- 9) NOXIOUS WEED SEEDS 0.00%
- 10) LOT No. 8613
- 11) JOE H. SEED GROWER ANY TOWN, SD 57000

- 15) UNAUTHORIZED PROPAGATION PROHIBITED — USPROTECTED VARIETY PVP-94
- 12) ORIGIN: SD
- 13) DATE TESTED 1-97
- 14) SEED TREATMENT TREATED
 WITH VITAVAX 200. DO NOT
 USES FOR FOOD, FEED OR OIL
 PURPOSES. (POISON)
 (USE SEPARATE LABEL IF SKULL &
 CROSSBONES NEEDED)

Certification Process:

Application from seed producer

Farm background search and inspection

Crop inspections

Storage inspections (if required)

Shipping point inspections and tagging

Certification:

Classes:

Breeder - derived from original stocks

Foundation (white tag) – 1st generation

Registered (purple tag) – 2nd generation

Certified (blue tag) – 3rd generation, usually sold for vegetable production

Seed Production Principles

Production:

Practices that maximize seed yield and quality

Practices that minimize disease exposure

Practices that maximize germination

Storage conditions that retain vigor

Seed Production Principles

Factors affecting vigor:

Mother plant health

Production conditions

Storage conditions

Seed age

Seed Production Principles

Improving seed quality

Seed treatment (fungicide, insecticide)

Seed sizing

Hybrid seed production

Seed coating

Osmoconditioning

Synthetic seed???

Stand Establishment – Direct Seeding

Methods for optimizing stand:

Bed preparation – shape, orientation

Anticrustants – vermiculite, phosphoric acid, thiosol,

gypsum

Precision drilling

Plug mixes

Fluid drilling

Moisture control

Transplanting

Plants are started in various kinds of plant growth structures and transplanted outdoors when conditions become favorable.

Extends growing season.

Methods for successful transplanting

Use of plugs

Use of vigorous plants

Appropriate hardening (7-14 days)

High level of fertility (e.g. 10-50-10 starter solution)

Methods for successful transplanting

Frost protection

Moisture control

High level of fertility (e.g. 10-50-10 starter solution)

Row covers – hot caps, cloches, plastic tunnels

Benefits

Improve stand and production uniformity

Force earliness

Reduce seed costs

Improve weed control

Decrease season-long water use

Crops typically transplanted:

Tomato Peppers

Cauliflower Lettuce

Celery Melons

Broccoli Beets

Eggplant Onion (sets)

Cabbage Broccoli

Brussels sprouts

Vegetative Propagation

Methods:

Cuttings (sweet potatoes, taro, cassava)

Tubers or bulbs (potatoes, onions, garlic)

Root division (asparagus, rhubarb)

Vegetative Propagation

Unique features:

Chronic disease problems

Complex certification procedures

Quality dependent on previous crop

Perishable propagules

