Enterprise Budget

Camelina (Spring) Following Fallow, Conservation Tillage, Less than 14-Inch Precipitation Zone, North Central Region

Luke Stein ${ }^{1}$, Clark Seavert ${ }^{1}$, Sandy Macnab ${ }^{2}$ and Steven Petrie ${ }^{3}$ ${ }^{1}$ Graduate student and Agricultural Economist, Department of Applied Economics, ${ }^{2}$ Extension Cereal Grains, Sherman \& Wasco Counties, Oregon State University, and ${ }^{3}$ Director of Agronomic Services for Yara North America.

AEB 0045, June 2014

This enterprise budget estimates the typical costs and returns of producing spring camelina using conservation tillage production practices in a less than 14 -inch precipitation zone. It should be used as a guide to estimate actual costs and returns and is not representative of any particular farm. The major assumptions used in constructing this budget are discussed below and for winter wheat assumptions refer to Enterprise Budget, Wheat (Winter) Following Fallow, Conservation Tillage, Less Than 12-inch Precipitation Zone, North Central Region, AEB 0033, revised October 2012. Assistance provided by area producers and agribusinesses is greatly appreciated.

Cropping Pattern

This budget is based on a 3,800 -acre farm with 1,600 acres in winter wheat and 300 acres in spring camelina production each year following 1,900 acres of fallow. The average annual precipitation is less than 14 -inches. Typical yield in this budget is 1,200 pounds per acre, the approximate average yield in the region.

Land

A land lease charge of $\$ 48$ per acre is included to represent the cost of leasing or owning land. This correlates to the payment a landowner would receive under a 20 percent crop-share lease, the most common arrangement for camelina in this area.

Labor

Typically tractor drivers and harvest labor cost approximately $\$ 12$ per hour, all of which include social security, workers' compensation, unemployment insurance, and other labor overhead expenses. For this study, owner labor is valued at the same rate as tractor driver rates, and all labor is assumed to be a cash costs. Labor hours are calculated based on machinery hours.

Capital

Interest on operating capital (5 percent) is treated as a cash expense. One-third of the cash expenses are borrowed for 12 -months. Interest on intermediate (6 percent) and longterm capital (4 percent) is treated as a non-cash opportunity cost to the owner.

Machinery and Equipment

The machinery and equipment used in this budget are sufficient for a 3,800-acre farm in a less than 14 -inch
precipitation zone. The machinery and equipment hours reflect producing both camelina and winter wheat. A detailed breakdown of machinery values is shown in Table 2. Note: Precision technologies, such as GPS auto-steer and spray boom controller, are included in this budget. They increase machine efficiencies, lower labor, machinery and equipment hours. Estimated machinery costs are shown in Table 3. The machinery costs are estimated based on the total farm use of the machinery. Gasoline costs $\$ 3.80$, onroad diesel $\$ 4.00$ and off-road diesel $\$ 3.46$ per gallon. Table 4 shows the labor, variable, and fixed costs for certain machinery operations.

Operations

The cultural operations are listed approximately in the order in which they are performed. A $350-\mathrm{hp}$ crawler tractor is used for pulling the bank-out wagon, chisel, rotary harrow, field cultivator, sprayer and drill. A combine is used to harvest both winter wheat and camelina. The grain is hauled to Pendleton. There is a limited selection of farm chemicals available for in-crop use with camelina. A miscellaneous charge of $\$ 10$ per acre is added, which includes additional labor, repairs and maintenance, and materials not included in field operations.

Results

The price received for camelina is $\$ 0.20$ per pound, the average received for production delivered to Pendleton. Variable cash production costs are $\$ 144$ per acre, resulting in a net return above variable cash costs of $\$ 96$ per acre. Total costs are $\$ 248$ per acre when all costs are considered. A break-even price of $\$ 0.12$ per pound would be required to cover variable cash costs, and $\$ 0.21$ per pound to cover total costs. Tables 5 and 6 show the returns per acre for cash and total costs at various yields and prices.

This project is supported by Formula Grant no. 2012-67009-19917 from the USDA National Institute of Food and Agriculture and Oregon State University.

Machine	Size	Current Market Value	Hours or Miles of Annual	Expected Life (Years)
Tractor, rubber tracked	350 hp	\$166,000	862	15
Combine, used	30' Hillside	358,000	126	10
Rotary mower	26^{\prime}	53,000	167	15
Chisel plow	40^{\prime}	53,000	109	15
Field sprayer	90^{\prime}	55,000	92	15
Cultivator	$45 '$	54,500	0	15
Culti-weeder	60^{\prime}	47,000	137	15
Grain drills	36^{\prime}	35,100	136	15
Bank out wagon	850 bushel capacity	49,000	139	20
Pickup, two	$3 / 4$ ton 4X4, new	40,000	15,000	10
Truck \& trailer	Semi, used	52,000	3,000	10
Truck	$21 / 2$ ton, older	18,000	2,400	10
ATV	4-wheeler new	9,500	3,000	5
Precision technologies	GPS auto-steer, etc.	21,550	N/A	7
Other machinery		16,000	N/A	10

Table 3. Machinery Cost Calculations						
Machine	Size	---- Variable Costs ----		---- Fixed Costs ----		Total Cost
		Fuel \& Lube	Repairs \& Maint.	Depreciation	Interest	
		------------------ Costs per Hour --------------------				
Tractor, rubber tracked	350 hp	\$39.79	\$11.12	\$10.34	\$11.56	\$72.81
Combine, used	30' Hillside	29.05	65.16	230.38	170.44	495.02
Rotary mower	26^{\prime}	0.00	12.72	19.08	18.99	50.79
Chisel plow	40^{\prime}	0.00	29.52	29.35	29.22	88.08
Field sprayer	90^{\prime}	0.00	42.68	36.16	36.00	114.85
Culti-weeder	60^{\prime}	0.00	26.18	20.60	20.51	67.29
Grain drills	36^{\prime}	0.00	23.48	15.55	15.48	54.51
Bank out wagon	850 bushel capacity	0.00	11.76	15.98	1.55	29.28
		------------------ Costs per Mile -----------------				
Pickup, costs per vehicle	3/4 ton 4X4, new	\$0.44	\$0.21	\$0.22	\$0.16	\$1.02
Truck \& trailer	Semi, used	0.92	0.83	1.43	1.04	4.22
Truck	$21 / 2$ ton, older	0.87	0.29	0.62	0.45	2.23
ATV	4-wheeler new	0.29	0.02	0.52	0.19	1.02
			-------- C	ts per Acre	------	
Precision technologies	GPS auto-steer, etc.	\$0.00	\$0.57	\$1.62	\$0.68	\$2.87
Other machinery		0.00	0.42	0.84	0.51	1.77

Table 4. Estimated Cost of Each Operation with Power-Unit.

				-- Machine Costs ---									
Operation	Miles per Hour								Acres per Hour	Labor Cost per Acre	Variable Cost per Acre	Fixed Cost	Total Cost Acre
per Acre													

Price	ound		600		800		1,000		1,200		1,400		1,600		1,800
\$	0.12	\$	(71.77)	\$	(47.77)	\$	(23.77)	\$	0.23	\$	24.23	\$	48.23	\$	72.23
\$	0.15	\$	(53.77)	\$	(23.77)	\$	6.23	\$	36.23	\$	66.23	\$	96.23	\$	126.23
\$	0.17	\$	(41.77)	\$	(7.77)	\$	26.23	\$	60.23	\$	94.23	\$	128.23	\$	162.23
\$	0.20	\$	(23.77)	\$	16.23	\$	56.23	\$	96.23	\$	136.23	\$	176.23	\$	216.23
\$	0.23	\$	(5.77)	\$	40.23	\$	86.23	\$	132.23	\$	178.23	\$	224.23	\$	270.23
\$	0.21	\$	(17.77)	\$	24.23	\$	66.23	\$	108.23	\$	150.23	\$	192.23	\$	234.23
\$	0.24	\$	0.23	\$	48.23	\$	96.23	\$	144.23	\$	192.23	\$	240.23	\$	288.23

Table 6. Estimated Per Acre Returns Over Total Costs at Varying Yields and Prices.

Price/Pound			600		800		1,000		1,200		1,400		1,600		1,800
\$	0.12	\$	(176.15)	\$	(152.15)	\$	(128.15)	\$	(104.15)	\$	(80.15)	\$	(56.15)	\$	(32.15)
\$	0.15	\$	(158.15)	\$	(128.15)	\$	(98.15)	\$	(68.15)	\$	(38.15)	\$	(8.15)	\$	21.85
\$	0.17	\$	(146.15)	\$	(112.15)	\$	(78.15)	\$	(44.15)	\$	(10.15)	\$	23.85	\$	57.85
\$	0.20	\$	(128.15)	\$	(88.15)	\$	(48.15)	\$	(8.15)	\$	31.85	\$	71.85	\$	111.85
\$	0.23	\$	(110.15)	\$	(64.15)	\$	(18.15)	\$	27.85	\$	73.85	\$	119.85	\$	165.85
\$	0.21	\$	(122.15)	\$	(80.15)	\$	(38.15)	\$	3.85	\$	45.85	\$	87.85	\$	129.85
\$	0.24	\$	(104.15)	\$	(56.15)	\$	(8.15)	\$	39.85	\$	87.85	\$	135.85	\$	183.85

